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Last Lecture

• Poisoning Attacks

• Poisoning Scenarios
• Centralized 
• Distributed

• Defense for Poisoning Attacks
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This Lecture

• Membership Inference Attacks

• Model Inversion Attacks

• Model Stealing Attacks

• Privacy Protection Methods
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Membership Inference Attacks
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https://dl.acm.org/doi/abs/10.1145/3436755

• Determine whether an individual data instance 𝑥∗ is part of the training 
dataset 𝒟 for a model.

• The membership inference attacks on both supervised classification models 
and generative models (GANs, VAEs) have been demonstrated.

• A common approach is to first train several shadow models that imitate the 
behavior of the target model and use the prediction vectors of the shadow 
models for training a binary classifier (that infers the membership).



Shadow Training Attack (1)

• Threat model:
• The adversary has back-box query access to the target model
• The goal is to infer whether input samples were part of its private training set

• Shadow training approach:
• Create several shadow models to substitute the target model 
• Each shadow model is trained on a dataset that has a similar distribution as 

the private training dataset of the target model
• E.g., if the target model performs celebrity face recognition, the attacker can collect 

images of celebrities from the Internet
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Shadow Training Attack (2)

• The output probability vectors from the shadow models are next 
used as inputs to train attack models (as binary classifiers) for 
each class
• E.g., the probability vectors for all input images of Alice from all shadow 

training sets are labeled with 1 (meaning ‘in’ the training set)
• The probability vectors for all input images of Alice from all shadow test 

sets are labeled with 0 (meaning ‘out’ or not in the training set)
• An attack model is trained on these inputs to perform binary classification 

(in or out)
• A separate attack model is trained for each celebrity person in the 

shadow training sets
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Shadow Training Attack (3)
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https://arxiv.org/abs/1610.05820



Shadow Training Attack (4)

• The attack models for each class are afterward used to predict 
whether individual input instances were members of the private 
training set of the target model. 

• The assumption in this attack is that the output probability vectors 
for samples that are members of the training sets are different 
from samples out of the training sets.

• Experiments showed that increasing the number of shadow 
models improves the accuracy of membership inference, but it 
also increases the computational recourses.
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Model Inversion Attack (1)
• Model inversion attack creates prototype examples for the classes 

in the dataset
• The authors demonstrated an attack against a DNN model for face recognition.
• Given a person’s name and white-box access to the model, the attack reverse-

engineered the model and produced an averaged image of that person.
• The obtained averaged image (left image below) makes the person 

recognizable.
• This attack is limited to classification models where the classes pertain to one 

type of object (such as the faces of the same person).
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Recovered Image Training Image Data

https://dl.acm.org/doi/10.1145/2810103.2813677



Model Inversion Attack (2)
• The model inversion attack applies gradient descent to start from a 

given label and follows the gradient in a trained network to recreate 
an image for that label
• In the algorithm, c denotes the cost function, whereas the PROCESS function 

applies image denoising and sharpening operations to improve the reconstructed 
image
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AuxTerm: case-specific 
function, any available 
auxiliary information to 
inform the cost function.

f_{label}: facial recognition 
model



Inferring sensitive features (e.g., face) in the training data:
Rather than reconstructing private training data from scratch, we leverage 
partial public information, to learn a distributional prior via generative 
adversarial networks (GANs) and use it to guide the inversion process.

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks. CVPR’20 Yuheng Zhang, Ruoxi Jia , Hengzhi Pei1, Wenxiao Wang , Bo Li , and Dawn Song

Blurred or 
corrupted 
version of the 
private image
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GAN-based Model Inversion Attack



Stage 1: Train the generator and the discriminators on public 
datasets in order to encourage the generator to generate 
realistic-looking images.

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks. CVPR’20

Stage 2: Find the latent vector that generates an image achieving the maximum likelihood under the target 
network while remaining realistic.
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GAN-based Model Inversion Attack
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Model Stealing Attack

• Adversarial goal: reconstruct an approximated model 𝑓′(𝑥) of the 
target model 𝑓 𝑥 .

• The approximated function 𝑓′ 𝑥  will act as a substitute model 
and produce similar outputs as the target model.
• The adversary has black-box query access to the model
• The goal is to “steal” the model and use the substitute model for launching other 

attacks, such as synthesis of adversarial examples, or membership inference 
attacks

• Besides creating a substitute model, several works focused on 
recovering the hyperparameters of the model, such as the number 
of layers, optimization algorithm, activation types used, etc.
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Causes of Privacy Leaks in Machine Learning
• Overfitting

• It leads to poor generalization and memorization of the training data
• Although adversarial training is often applied for increasing to model robustness, it 

reduces the accuracy of model on clean data, due to the trade-off between the model 
accuracy and robustness

• The reduced accuracy can lead to increased sensitivity to data leakage

• Datasets that are more diverse and with a larger number of categories are 
more susceptible to attacks
• Binary classifiers are safer than multiclass models
• Input samples that are out-of-distribution (i.e., are considered outliers with respect to 

the distribution of the training data) are more susceptible to privacy leakage

• Model complexity
• Complex models with a large number of parameters memorize more sensitive 

information about the training data
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Defenses against Privacy Attacks

• Anonymization techniques
• Encryption techniques
• Differential privacy
• Distributed learning
• ML-specific techniques
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Data Privacy
• Data privacy techniques have the goal of allowing analysts to learn 

about trends in data, without revealing information specific 
to individual data instances
• Therefore, privacy techniques involve an intentional release of information, and an 

attempt to control what can be learned from the released information
• The Fundamental Law of Information Recovery states that “overly 

accurate estimates of too many statistics can completely destroy 
privacy”
• I.e., extracting useful information from a dataset (e.g., for training an ML model) poses a 

privacy risk to the data
• There is an inevitable trade-off between privacy and accuracy (i.e., 

utility)
• Preferred privacy techniques should provide an estimate of how much privacy is lost by 

interacting with data
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Anonymization Techniques

• Anonymization techniques provide privacy protection by 
removing identifying information from the data

• E.g., remove personally identifiable information (PII) 
• In the example below, the Name and Address columns are masked
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User ID Name Address Account 
Type

Subscription 
Date

001 Alice 123 A St Pro 01/02/20

002 Bob 234 B St Free 02/03/21

003 Charlie 456 C St Pro 03/04/18

User ID Name Address Account 
Type

Subscription 
Date

001 Alice 123 A St Pro 01/02/20

002 Bob 234 B St Free 02/03/21

003 Charlie 456 C St Pro 03/04/18



Anonymization Techniques

• Drawback: The remaining information in the data can be used for 
identifying the individual data instances
• For example, based on health records (including diagnoses and 

prescriptions) with removed personal information released by an 
insurance group in 1997, a researcher extracted the information for the 
Governor of Massachusetts
• This is referred to as de-anonymization

• The same researcher later showed that 87% of all Americans can be 
uniquely identified using 3 bits of information: ZIP code, birth date, and 
gender
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K-anonymity
• k-anonymity is an approach for protecting data privacy by suppressing 

certain identifying data features
• This approach removes fields of data for individuals who have unique 

characteristics
• E.g., students at UI who are from Latvia and are enrolled in Architecture

• A dataset is k-anonymous if, for any person’s record, there are at least 
𝑘 − 1 other records that are indistinguishable
• Therefore, a linkage attack will result in a group of k records that can belong to a 

person of interest
• Limitation: this approach is mostly applicable to large datasets with 

low-dimensional input features
• The more input features for each record, the higher the possibility of unique 

records
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Encryption Techniques
• Encryption is a cryptography approach, which converts the 

original representation of information (plaintext) into an 
alternative form (Ciphertext)
• The sender of encrypted information shares the decoding technique only with 

the intended recipients of the information
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https://www.twilio.com/en-us/blog/what-is-public-key-cryptography



Encryption Techniques

• Encrypting the training data has been applied in ML 
• Common techniques for data encryption include:

• Homomorphic encryption (HE)
• Secure multi-party computation (SMPC)

• Encrypting ML models is a less common approach
• Homomorphic encryption has been applied to the model gradients in a 

collaborative deep learning setting to protect the model privacy
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Homomorphic Encryption

• Homomorphic encryption (HE) allows users to perform 
computations on encrypted data (without decrypting it)
• Encrypted data can be analyzed and manipulated without revealing the 

original data

• HE uses a public key to encrypt the data and applies an algebraic 
system (e.g., additions and multiplications) to allow computations 
while the data is still encrypted
• Only the person who has a matching private key can access the 

decrypted results
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Homomorphic Encryption
• In ML, training data can be encrypted and sent to a server for 

model training.
• Even if the server is untrusted or compromised, the confidentiality of the data 

will remain preserved.
• One main limitation of HE is the slowing down of the training process.

• HE has been applied to traditional ML approaches.
• Training DNNs over encrypted data is still challenging, due to the increased 

computational complexity.
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Homomorphic Encryption & Machine Learning: New 
Business Models

https://towardsdatascience.com/homomorphic-encryption-machine-learning-new-business-models-2ba6a4f185d
https://towardsdatascience.com/homomorphic-encryption-machine-learning-new-business-models-2ba6a4f185d


Secure Multi-Party Computation
• Secure Multi-Party Computation (SMPC) is an extension of 

encryption in multi-party setting.
• SMPC allows two or more parties to jointly perform computation over their 

private data, without sharing the data.
• E.g., two banks want to know if they have both flagged the same individuals 

and learn about the activities of those individuals.
• The banks can share encrypted tables of flagged individuals, and they can 

decrypt only the matched records, but not the information for individuals that 
are not in both tables.
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https://arxiv.org/abs/1909.11701



Secure Multi-Party Computation

• In ML, SMPC can be used to compute updates of the model parameters 
by multiple parties without sharing their private data
• For example, SMPC has been applied to federated learning, where participants encrypt 

their updates, and the central server can recover only the sum of the updates from all 
participants

• Besides data privacy, SMPC also offers protection against adversarial participants
• Either all parties are honest and can jointly compute the correct output, or if a malicious 

party is dishonest the joint output will be incorrect

• SMPC has been applied to traditional ML models, such as decision 
trees, linear regression, logistic regression, Naïve Bayes, k-means 
clustering
• Application of SMPC to DNNs is also challenging, due to increased computational costs
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SMPC and HE

• SMPC protects the privacy of the data in collaborative learning
• E.g., participants in collaborative learning do not trust the other 

participants or the central server 

• HE protects the confidentiality of the data from external 
adversaries
• E.g., a data owner wants to use an MLaaS (Machine Learning as a Service) 

, but does not trust the service provider: the owner sends encrypted data, 
the provider processes encrypted data and sends back encrypted results, 
the owner decrypts the results

• Or, a bank can store encrypted banking information in the cloud, and use 
HE to ensure that only the employees of the bank can access the data
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Differential Privacy
• Differential privacy is based on employing obfuscation mechanisms 

for privacy protection
• A randomization mechanism ℳ 𝐷  applies noise ξ to the outputs of a function 𝑓 𝐷  to 

protect the privacy of individual data instances, i.e., ℳ 𝐷 = 𝑓 𝐷 + ξ
• Commonly used randomization mechanisms include Laplacian, Gaussian, and 

Exponential mechanism
• DP is often implemented in practical applications, and examples 

include:
• 2014: Google's RAPPOR, for statistics on unwanted software hijacking users' settings
• 2015: Google, for sharing historical traffic statistics
• 2016: Apple, for improving its Intelligent personal assistant technology
• 2017: Microsoft, for telemetry in Windows
• 2020: LinkedIn, for advertiser queries
• 2020: U.S. Census Bureau, for demographic data
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Differential Privacy
• In ML, DP is achieved by adding noise to:

• Model parameters
• Several works applied DP to conventional ML methods.
• Differentially private SGD (Abadi, 2016) clips and adds noise to the gradients of deep 

NNs during training.
• This reduces the memorization of individual input instances by the model.

• The approaches that apply obfuscation to the model parameters via DP are also referred 
to as differentially private ML.

• Model outputs
• PATE (Private Aggregation of Teacher Ensembles) approach (Papernot, 2018) employs an 

ensemble of models trained on disjoint subsets of the training data, called teacher 
models.

• Noise is added to the outputs of the teacher models, and the aggregated outputs are 
used to train another model, called the student model.

• Training data
• Obfuscation of training data in ML has been also investigated in several works.
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Distributed Learning
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• Distributed learning allows multiple 
parties to train a global model without 
releasing their private data

• Some form of aggregation is applied 
to the local updates of the model 
parameters by the users in distributed 
learning to create a global model
• E.g., averaging is one common form of 

aggregation

• Federated learning is the most 
popular distributed learning scheme https://arxiv.org/abs/2011.11819



Distributed Learning
• Federated learning or collaborative learning – learn one global model using data 

stored at multiple locations (e.g., remote devices)
• The data are processed locally and used to update the model

• The data does not leave the remote devices and remains private
• The central server aggregates the updates and creates the global model

• Decentralized Peer-to-Peer (P2P) learning – the remote devices communicate and 
exchange the updates directly, without a central server

• Removes the need to send updates to a potentially untrusted central server
• Split learning – each remote device is used to train several layers of the global 

model, and send the outputs to a central server
• The remote devices can train the initial layers of a DNN, and the central server can train the 

final layers
• The gradient is back-propagated from the central server to each user to sequentially complete the back-

propagation through all layers of the model
• The devices send the outputs of  intermediate layers, rather than model parameters
• Split learning is more common for IoT devices with limited computational resources
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ML-Specific Techniques

• Overfitting is one of the reasons for information leakage:
• Regularization techniques in ML can therefore be used to reduce 

overfitting, as well as a defense strategy
• Different regularization techniques in NNs include:

• Explicit regularization: dropout, early stopping, weight decay
• Implicit regularization: batch normalization

• Other ML-specific techniques include:
• Dimensionality reduction – removing inputs with features that occur rarely 

in the training set
• Weight-normalization – rescaling the weights of the model during training
• Selective gradient sharing – in federated learning, the users share a 

fraction of the gradient at each update
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