Trustworthy AI Systems

-- Privacy of Al

Instructor: Guangjing Wang guangjingwang@usf.edu

Last Lecture

- Poisoning Attacks
- Poisoning Scenarios
 - Centralized
 - Distributed
- Defense for Poisoning Attacks

This Lecture

- Membership Inference Attacks
- Model Inversion Attacks
- Model Stealing Attacks
- Privacy Protection Methods

Membership Inference Attacks

- Determine whether an individual data instance x^* is part of the training dataset \mathcal{D} for a model.
- The membership inference attacks on both supervised classification models and generative models (GANs, VAEs) have been demonstrated.
- A common approach is to first train several *shadow models* that imitate the behavior of the target model and use the prediction vectors of the shadow models for training a binary classifier (that infers the membership).

Shadow Training Attack (1)

- Threat model:
 - The adversary has **back-box** query access to the target model
 - The goal is to infer whether input samples were part of its private training set
- Shadow training approach:
 - Create several shadow models to substitute the target model
 - Each shadow model is trained on a dataset that has a similar distribution as the private training dataset of the target model
 - E.g., if the target model performs celebrity face recognition, the attacker can collect images of celebrities from the Internet

Shadow Training Attack (2)

- The output probability vectors from the shadow models are next used as inputs to train attack models (as binary classifiers) for each class
 - E.g., the probability vectors for all input images of Alice from all shadow **training sets** are labeled with 1 (meaning 'in' the training set)
 - The probability vectors for all input images of Alice from all shadow test sets are labeled with 0 (meaning 'out' or not in the training set)
 - An attack model is trained on these inputs to perform binary classification (in or out)
 - A separate attack model is trained for each celebrity person in the shadow training sets

Shadow Training Attack (3)

https://arxiv.org/abs/1610.05820

Shadow Training Attack (4)

- The attack models for each class are afterward used to predict whether individual input instances were members of the private training set of the target model.
- The assumption in this attack is that the output probability vectors for samples that are members of the training sets are different from samples out of the training sets.
- Experiments showed that increasing the number of shadow models improves the accuracy of membership inference, but it also increases the computational recourses.

This Lecture

Membership Inference Attacks

- Model Inversion Attacks
- Model Stealing Attacks
- Privacy Protection Methods

Model Inversion Attack (1)

- *Model inversion attack* creates prototype examples for the classes in the dataset
 - The authors demonstrated an attack against a DNN model for face recognition.
 - Given a person's name and white-box access to the model, the attack reverseengineered the model and produced an averaged image of that person.
 - The obtained averaged image (left image below) makes the person recognizable.
 - This attack is limited to classification models where the classes pertain to one type of object (such as the faces of the same person).

Recovered Image

Training Image Data

Model Inversion Attack (2)

- The model inversion attack applies gradient descent to start from a given label and follows the gradient in a trained network to recreate an image for that label
 - In the algorithm, c denotes the cost function, whereas the PROCESS function applies image denoising and sharpening operations to improve the reconstructed image
 Algorithm 1 Inversion attack for facial recognition models.

1: function MI-FACE(*label*, $\alpha, \beta, \gamma, \lambda$) $c(\mathbf{x}) \stackrel{\text{def}}{=} 1 - \tilde{f}_{label}(\mathbf{x}) + \text{AUXTERM}(\mathbf{x})$ 2: 3: $\mathbf{x}_0 \leftarrow \mathbf{0}$ for $i \leftarrow 1 \dots \alpha$ do 4: $\mathbf{x}_i \leftarrow \operatorname{PROCESS}(\mathbf{x}_{i-1} - \lambda \cdot \nabla c(\mathbf{x}_{i-1}))$ 5:if $c(\mathbf{x}_i) > \max(c(\mathbf{x}_{i-1}), \ldots, c(\mathbf{x}_{i-\beta}))$ then 6: 7: break if $c(\mathbf{x}_i) < \gamma$ then 8: break 9: return $[\arg \min_{\mathbf{x}_i} (c(\mathbf{x}_i)), \min_{\mathbf{x}_i} (c(\mathbf{x}_i))]$ 10:

AuxTerm: case-specific function, any available auxiliary information to inform the cost function.

f_{label}: facial recognition model

GAN-based Model Inversion Attack

Inferring sensitive features (e.g., face) in the training data: Rather than reconstructing private training data from scratch, we leverage partial public information, to **learn a distributional prior** via generative adversarial networks (GANs) and use it to guide the inversion process.

Figure 1: Overview of the proposed GMI attack method.

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks. CVPR'20 Yuheng Zhang, Ruoxi Jia, Hengzhi Pei1, Wenxiao Wang, Bo Li, and Dawn Song

GAN-based Model Inversion Attack

Stage 1: Train the generator and the discriminators on public datasets in order to encourage the generator to generate realistic-looking images.

$$\min_{G} \max_{D} L_{\text{wgan}}(G, D) = E_x[D(x)] - E_z[D(G(z))]$$

$$\max_{G} L_{\text{div}}(G) = E_{\mathbf{z_1}, \mathbf{z_2}} \left[\frac{\|F(G(\mathbf{z_1})) - F(G(\mathbf{z_2}))\|}{\|\mathbf{z_1} - \mathbf{z_2}\|} \right]$$

Stage 2: Find the latent vector that generates an image achieving the maximum likelihood under the target network while remaining realistic.

$$\hat{z} = \arg\min_{z} L_{\text{prior}}(z) + \lambda_i L_{\text{id}}(z)$$

$$L_{\text{prior}}(z) = -D(G(z)) \quad L_{\text{id}}(z) = -\log[C(G(z))]$$

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks. CVPR'20

This Lecture

Membership Inference Attacks

- Model Inversion Attacks
- Model Stealing Attacks
- Privacy Protection Methods

Model Stealing Attack

- Adversarial goal: reconstruct an approximated model f'(x) of the target model f(x).
- The approximated function f'(x) will act as a substitute model and produce similar outputs as the target model.
 - The adversary has black-box query access to the model
 - The goal is to "steal" the model and use the substitute model for launching other attacks, such as synthesis of adversarial examples, or membership inference attacks
- Besides creating a substitute model, several works focused on recovering the hyperparameters of the model, such as the number of layers, optimization algorithm, activation types used, etc.

This Lecture

Membership Inference Attacks

- Model Inversion Attacks
- Model Stealing Attacks
- Privacy Protection Methods

Causes of Privacy Leaks in Machine Learning

- Overfitting
 - It leads to poor generalization and memorization of the training data
 - Although adversarial training is often applied for increasing to model robustness, it reduces the accuracy of model on clean data, due to the trade-off between the model accuracy and robustness
 - The reduced accuracy can lead to increased sensitivity to data leakage
- Datasets that are more diverse and with a larger number of categories are more susceptible to attacks
 - Binary classifiers are safer than multiclass models
 - Input samples that are out-of-distribution (i.e., are considered outliers with respect to the distribution of the training data) are more susceptible to privacy leakage
- Model complexity
 - Complex models with a large number of parameters memorize more sensitive information about the training data

Defenses against Privacy Attacks

- Anonymization techniques
- Encryption techniques
- Differential privacy
- Distributed learning
- ML-specific techniques

Data Privacy

- Data privacy techniques have the goal of allowing analysts to learn about trends in data, without revealing information specific to individual data instances
 - Therefore, privacy techniques involve an intentional release of information, and an attempt to control what can be learned from the released information
- The Fundamental Law of Information Recovery states that "overly accurate estimates of too many statistics can completely destroy privacy"
 - I.e., extracting useful information from a dataset (e.g., for training an ML model) poses a privacy risk to the data
- There is an inevitable trade-off between privacy and accuracy (i.e., utility)
 - Preferred privacy techniques should provide an estimate of how much privacy is lost by interacting with data

Anonymization Techniques

- *Anonymization* techniques provide privacy protection by removing identifying information from the data
- E.g., remove personally identifiable information (PII)
 - In the example below, the Name and Address columns are masked

User ID	Name	Address	Account Type	Subscription Date
001	Alice	123 A St	Pro	01/02/20
002	Bob	234 B St	Free	02/03/21
003	Charlie	456 C St	Pro	03/04/18

User ID	Name	Address	Account Type	Subscription Date
001	Alice	123 A St	Pro	01/02/20
002	Bob	234 B St	Free	02/03/21
003	Charlie	456 C St	Pro	03/04/18

Anonymization Techniques

- Drawback: The remaining information in the data can be used for identifying the individual data instances
 - For example, based on health records (including diagnoses and prescriptions) with removed personal information released by an insurance group in 1997, a researcher extracted the information for the Governor of Massachusetts
 - This is referred to as *de-anonymization*
 - The same researcher later showed that 87% of all Americans can be uniquely identified using 3 bits of information: ZIP code, birth date, and gender

K-anonymity

- *k-anonymity* is an approach for protecting data privacy by suppressing certain identifying data features
 - This approach removes fields of data for individuals who have unique characteristics
 - E.g., students at UI who are from Latvia and are enrolled in Architecture
- A dataset is k-anonymous if, for any person's record, there are at least k-1 other records that are indistinguishable
 - Therefore, a linkage attack will result in a group of k records that can belong to a
 person of interest
- Limitation: this approach is mostly applicable to large datasets with low-dimensional input features
 - The more input features for each record, the higher the possibility of unique records

Encryption Techniques

- Encryption is a cryptography approach, which converts the original representation of information (plaintext) into an alternative form (Ciphertext)
 - The sender of encrypted information shares the decoding technique only with the intended recipients of the information

https://www.twilio.com/en-us/blog/what-is-public-key-cryptography

Encryption Techniques

- Encrypting the training data has been applied in ML
 - Common techniques for data encryption include:
 - Homomorphic encryption (HE)
 - Secure multi-party computation (SMPC)
- Encrypting ML models is a less common approach
 - Homomorphic encryption has been applied to the model gradients in a collaborative deep learning setting to protect the model privacy

Homomorphic Encryption

- Homomorphic encryption (HE) allows users to perform computations on encrypted data (without decrypting it)
 - Encrypted data can be analyzed and manipulated without revealing the original data
- HE uses a public key to encrypt the data and applies an algebraic system (e.g., additions and multiplications) to allow computations while the data is still encrypted
 - Only the person who has a matching private key can access the decrypted results

Homomorphic Encryption

- In ML, training data can be encrypted and sent to a server for model training.
 - Even if the server is untrusted or compromised, the confidentiality of the data will remain preserved.
 - One main limitation of HE is the slowing down of the training process.
- HE has been applied to traditional ML approaches.
 - Training DNNs over encrypted data is still challenging, due to the increased computational complexity.

Secure Multi-Party Computation

- Secure Multi-Party Computation (SMPC) is an extension of encryption in multi-party setting.
 - SMPC allows two or more parties to jointly perform computation over their private data, without sharing the data.
 - E.g., two banks want to know if they have both flagged the same individuals and learn about the activities of those individuals.
 - The banks can share encrypted tables of flagged individuals, and they can decrypt only the matched records, but not the information for individuals that are not in both tables.

https://arxiv.org/abs/1909.11701

Secure Multi-Party Computation

- In ML, SMPC can be used to compute updates of the model parameters by multiple parties without sharing their private data
 - For example, SMPC has been applied to federated learning, where participants encrypt their updates, and the central server can recover only the sum of the updates from all participants
 - Besides data privacy, SMPC also offers protection against adversarial participants
 - Either all parties are honest and can jointly compute the correct output, or if a malicious party is dishonest the joint output will be incorrect
- SMPC has been applied to traditional ML models, such as decision trees, linear regression, logistic regression, Naïve Bayes, k-means clustering
 - Application of SMPC to DNNs is also challenging, due to increased computational costs

SMPC and HE

- SMPC protects the privacy of the data in collaborative learning
 - E.g., participants in collaborative learning do not trust the other participants or the central server
- HE protects the confidentiality of the data from external adversaries
 - E.g., a data owner wants to use an MLaaS (Machine Learning as a Service) , but does not trust the service provider: the owner sends encrypted data, the provider processes encrypted data and sends back encrypted results, the owner decrypts the results
 - Or, a bank can store encrypted banking information in the cloud, and use HE to ensure that only the employees of the bank can access the data

Differential Privacy

- Differential privacy is based on employing obfuscation mechanisms for privacy protection
 - A randomization mechanism $\mathcal{M}(D)$ applies noise ξ to the outputs of a function f(D) to protect the privacy of individual data instances, i.e., $\mathcal{M}(D) = f(D) + \xi$
 - Commonly used randomization mechanisms include Laplacian, Gaussian, and Exponential mechanism
- DP is often implemented in practical applications, and examples include:
 - 2014: Google's RAPPOR, for statistics on unwanted software hijacking users' settings
 - 2015: Google, for sharing historical traffic statistics
 - 2016: Apple, for improving its Intelligent personal assistant technology
 - 2017: Microsoft, for telemetry in Windows
 - 2020: LinkedIn, for advertiser queries
 - 2020: U.S. Census Bureau, for demographic data

Differential Privacy

- In ML, DP is achieved by adding noise to:
 - Model parameters
 - Several works applied DP to conventional ML methods.
 - Differentially private SGD (Abadi, 2016) clips and adds noise to the gradients of deep NNs during training.
 - This reduces the memorization of individual input instances by the model.
 - The approaches that apply obfuscation to the model parameters via DP are also referred to as differentially private ML.
 - Model outputs
 - PATE (Private Aggregation of Teacher Ensembles) approach (Papernot, 2018) employs an ensemble of models trained on disjoint subsets of the training data, called teacher models.
 - Noise is added to the outputs of the teacher models, and the aggregated outputs are used to train another model, called the student model.
 - Training data
 - Obfuscation of training data in ML has been also investigated in several works.

Distributed Learning

- **Distributed learning** allows multiple parties to train a global model without releasing their private data
- Some form of aggregation is applied to the local updates of the model parameters by the users in distributed learning to create a global model
 - E.g., averaging is one common form of aggregation
- Federated learning is the most popular distributed learning scheme

https://arxiv.org/abs/2011.11819

Distributed Learning

- Federated learning or collaborative learning learn one global model using data stored at multiple locations (e.g., remote devices)
 - The data are processed locally and used to update the model
 - The data does not leave the remote devices and remains private
 - The central server aggregates the updates and creates the global model
- Decentralized Peer-to-Peer (P2P) learning the remote devices communicate and exchange the updates directly, without a central server
 - Removes the need to send updates to a potentially untrusted central server
- Split learning each remote device is used to train several layers of the global model, and send the outputs to a central server
 - The remote devices can train the initial layers of a DNN, and the central server can train the final layers
 - The gradient is back-propagated from the central server to each user to sequentially complete the backpropagation through all layers of the model
 - The devices send the outputs of intermediate layers, rather than model parameters
 - Split learning is more common for IoT devices with limited computational resources

ML-Specific Techniques

- Overfitting is one of the reasons for information leakage:
 - Regularization techniques in ML can therefore be used to reduce overfitting, as well as a defense strategy
 - Different regularization techniques in NNs include:
 - Explicit regularization: dropout, early stopping, weight decay
 - Implicit regularization: batch normalization
- Other ML-specific techniques include:
 - Dimensionality reduction removing inputs with features that occur rarely in the training set
 - Weight-normalization rescaling the weights of the model during training
 - Selective gradient sharing in federated learning, the users share a fraction of the gradient at each update

References

- When Machine Learning Meets Privacy: A Survey and Outlook (https://dl.acm.org/doi/abs/10.1145/3436755)
- Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems (https://arxiv.org/abs/2311.11796)
- A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection (<u>https://ieeexplore.ieee.org/abstract/document/9599369</u>)
- A Survey on Differential Privacy for Unstructured Data Content (https://dl.acm.org/doi/full/10.1145/3490237)
- <u>https://differentialprivacy.org</u>